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Abstract

Three-dimensional elements with discontinuous shape functions have been developed to model brittle fracture in
unstructured meshes. Through the incorporation of discontinuous shape functions, highly localised deformations can
be captured in a coarse finite element mesh. By carefully examining the variational formulation, traction continuity is
assured in a weak sense across discontinuities and a discrete constitutive (traction—separation) model is applied. Using
discrete constitutive models avoids the need for numerical parameters to achieve mesh objective results with respect to
energy dissipation. Further, kinematic enhancements allow objective analysis in unstructured meshes. Examples of
three-dimensional analysis are shown to illustrate the performance of the model. © 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

In the past, the practical modelling of material failure in three dimensions has been limited by the
computational tools available. Two-dimensional models have been extensively applied for analysing frac-
ture in concrete, leaving the effect of the third direction uncertain. The obvious issue for two-dimensional
modelling is whether it should be carried out under plane strain or plane stress conditions. This question
can only be resolved properly through the comparison of plane stress and plane strain simulations with full
three-dimensional analyses. Further, tension experiments on concrete have shown that the fracture process
is rarely uniform in the third direction, since cracks generally propagate from one corner, rather than
uniformly through the entire depth of a specimen (Van Vliet and Van Mier, 1999). This results in different
crack patterns on the front- and rearside of a specimen as well as a potentially curved crack plane even in
direct tension tests. Such experimental observations raise questions, of what influence does the non-uniform

*Corresponding author. Fax: +31-15-278-6383.
E-mail address: g.wells@citg.tudelft.nl (G.N. Wells).

0020-7683/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(00)00029-9



898 G.N. Wells, L.J. Sluys | International Journal of Solids and Structures 38 (2001) 897-913

fracture in the third direction have on the global response and local failure mode, and also the validity of
two dimensional models for fracture.

For continuum modelling of brittle failure, the ill-posed nature of the classical continuum when applied
to strain softening type problems leads to results that are heavily dependent on the spatial discretisation,
both in terms of energy dissipated in failure and failure mode, making the value of its extension in three
dimensions questionable. Enhanced continuum models have been shown to overcome the limitations of the
classical continuum for softening problems through the inclusion of higher-order gradient (De Borst et al.,
1993) or non-local (Pijaudier-Cabot and Bazant, 1987) terms and an internal length scale to the material
description. The inclusion of non-local effects leads to a well-posed set of differential equations, producing
results which are objective with respect to the spatial discretisation. However, a common feature of higher-
order models is the need for a fine mesh in the failure zone in order to capture the very high strain gradients.
A mesh with several elements across the failure zone (depending on the order of the interpolations) is
required in order to accurately capture the failure zone. This requires some prior knowledge of where
failure will occur and limits the potential of such methods for three-dimensional applications. For practical
application of these models, special re-meshing techniques are required to refine the mesh locally in the
failure zones (Askes and Sluys, 2000).

The embedment of discontinuities within elements has been proposed as a method of overcoming the
mesh dependency of classical continuum models and the dependency of discrete models on mesh alignment.
Effectively, localised failure is treated as a discrete phenomenon, but contained within a continuum
framework. The embedment of the discontinuity within elements allows a crack to propagate arbitrarily
through a mesh, unlike conventional discrete models where possible crack paths are restricted to inter-
element boundaries. The damaging process of a material is viewed here from a level where it can be
compressed onto a line. Unlike enhanced continuum models, the embedment of discontinuities is ideal for
situations where the typical finite element size is several times larger than the identifiable length scale of the
material. By carefully examining the variational formulation, the discontinuities can then be incorporated
within standard finite elements.

By formulating the embedded discontinuity as a special case of continuum constitutive laws (subject to
several conditions), considerable insight can be gained into the development of discontinuities. Simo et al.
(1993) linked the development of strong discontinuities with the loss of ellipticity of governing differential
equations of the classical continuum model. This allows the application of not only cohesive crack type
models, as have been used in the past for discrete crack modelling, but also provides a general framework
for other types of localised failure (Armero and Garikipati, 1996).

The discontinuity formulated here in three dimensions contains a jump in the displacement field (so-
called strong discontinuity) (Oliver and Simo, 1994; Lotfi and Shing, 1995; Armero and Garikipati, 1996;
Larsson and Runesson, 1996). The alternative is a weak discontinuity where a jump is added in the strain
field (Ortiz et al., 1987, Belytschko et al., 1988; Sluys and Berends, 1998). The weak approach allows the
direct application of continuum constitutive laws, since Dirac-delta distributions do not appear in the strain
field. This method is applicable in problems that involve an obvious jump in strain rates (such as shear
bands in metals and soils), but it requires a length scale parameter to define the width of the strain jump and
as yet has been unable to overcome mesh alignment dependency (Sluys, 1997). Through the addition of
specially constructed enhanced shape functions in the strong discontinuity model, elements are more able to
properly represent the highly localised modes that prelude failure.

The extension of embedded discontinuities to three dimensions is a natural progression to exploit the
advantages of the embedded model. However, three-dimensional implementation places extra demands on
the robustness and is computationally challenging. The increased number of alternative equilibrium paths
as a crack propagates in three dimensions (particularly through unstructured meshes) makes the solution
procedure critical. In order to construct embedded discontinuities within finite elements, here elements are
kinematically enhanced to allow proper reproduction of the localised deformation modes. Then, the three-
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field variational statements are extended to include a displacement jump. The resulting Dirac-delta dis-
tributions are explicitly integrated along the discontinuity, providing admissible variations of the enhanced
modes (test functions) to satisfy traction continuity across the embedded interfaces. Through the explicit
integration of the Dirac-delta distributions, no special artificial numerical parameters are required for the
numerical implementation. A comparison is made between the approach where enhanced modes are
constructed by the examination of the variational statements only (symmetric approach) and the approach
which includes kinematically constructed enhancements (non-symmetric). The finite element analysis here is
carried out using the four-noded tetrahedron as the underlying element. The ability of this model to
produce mesh-objective results in three-dimensional problems as well as its ability to model curved cracking
is examined.

2. Kinematic description

Consider a body Q crossed by a material discontinuity (Fig. 1). The body can be decomposed into two
sub-domains, Q" and Q~, which lie on either side of a discontinuity I'y. A vector normal to the disconti-
nuity Iy is defined as ny. In addition, it is useful to define a sub-domain of Q, Q¢, which is centred on the
discontinuity.

2.1. Discontinuous displacement field

In order to describe the displacement field of a body crossed by a discontinuity, the displacement field
can be decomposed into continuous and discontinuous parts,

U(X, t) = ﬁ(X,t) + %Fd[u(xa t)]v (1)

where u(x, ) is the regular, continuous part of the displacement field, #r, is the Heaviside function centred
on the discontinuity (#r, =1 if x € Q", #r, =0 if x € Q") and [u(x,?)] is a continuous function on
Q. The vector [u(x, )] at the discontinuity (x € T'q) gives the components of the displacement jump across
the discontinuity.

The displacement decomposition carried out above uses two continuous functions (i and [u])) which are
both potentially non-zero on the boundary. In the context of finite element analysis, this means that when
imposing boundary conditions both @ and [u] must be taken into account. A more suitable decomposition
is one which requires that the enhanced component of the displacement field be zero on the boundary.
Therefore, only the regular part of the then displacement field need be taken into account at the boundaries
(Oliver and Simo, 1994).

u(x, 1) = a(x, 2) + (Ar, — (x))[u(x, 9] (2)

Qd

Fig. 1. Body crossed by a material discontinuity.
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Fig. 2. One-dimensional displacement decomposition.

In Eq. (2), ¢(x) is a continuous function obeying

o ={y Yoo o)

Taking the gradient of Eq. (2) yields the strain field. In the context of brittle fracture, infinitesimal strains
are assumed throughout. All gradients V are taken to be the symmetric part only.

&(x, 1) = Va(x, 1) + ((dr,na(x) — Vo(x)) @ [u(x, )]) + (A1, — ¢(x))(V[u(x, 1)) . (4)
regular part enhanced part

The one-dimensional displacement decomposition for Eq. (2) is shown in Fig. 2.

3. Finite element implementation

In keeping with finite element convention, discretised forms of the initial value problem are expressed in
matrix—vector form where the strain and stress tensors are represented as column vectors (¢ = (&1, &2, &3,
2812,2823,2831)T, o= (011,022,0337012,023,031)T). For fields which are not discretised, tensor notation is
used. The discretised kinematic fields for a body containing a discontinuity can be written as follows:

u(x) = N,(x)a + N, (x)a, (5a)
¢(x) = B(x)a + G(x)a, (5b)

where N, and B are the normal displacement and strain interpolation matrices, respectively, N, and G are
the displacement and strain interpolation matrices, respectively, for the enhanced modes, a is the nodal
displacement and « is the displacement associated with enhanced degrees of freedom at the discontinuity.
Further, it is necessary to define a matrix which contains the normal components to the discontinuity.

n, 0.0 n, 0 n
nf=1,0 n, 0 n. n 0] (6)
0 0 n. 0 n, n

3.1. Mixed variational formulation

To construct a finite element that incorporates a displacement discontinuity, it is necessary to examine
the three-field variational statements. This is done starting from a modified form of the three-field varia-
tional statements that include the so-called enhanced strains (Simo and Rifai, 1990) where the strain field ¢ is
decomposed into compatible Vu and incompatible & parts. By considering the appearance of Dirac-delta
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distributions in the enhanced strain field and properties of the Dirac-delta distribution ( fQ ¢or,dQ =
fre ¢ dI'), the variational statements can be extended to include a displacement jump (Larsson and Run-
esson, 1996; Wells and Sluys, 2000),

=k

[ WNUEE) 4o ey =0, (7a)
fe) as

/‘c:éch—i-/ (2va) - ngdT" = 0, (7b)
Q T,

% =k

/T’c:(—a+—6W(X’Vu+8)>dQ+/ (—a+—aW(X’V"+8)>nd]-nddr:07 (7¢)
o Og Iy Oe

where (11,7,7) € (V x E x §) are all variations of displacements, strains and stresses respectively and
(u,2,6) € (V x E x S) are the actual displacements, strains and stresses respectively with (¥ x E x S) the
spaces of all displacement, strain and stress fields. The actual displacement jump across a discontinuity is
denoted by v4 and variations of the jump are denoted 5,. The stresses coming from the constitutive law are
given by W (x, Vu + &) /0.

3.1.1. Enhanced interpolations

The enhanced strain interpolation matrix, corresponding to G in Eq. (5b), can be formed for a single
element crossed by a discontinuity from the enhanced part of the strain field in Eq. (4). By assuming that
the displacement jump function [u(x, #)] is a constant function over an element (€.), part of the right-hand
side of the enhanced strain field in Eq. (4) disappears (V[u(x,#)]) = 0, x € Q.). In finite element terms, this
is equivalent to choosing the function (#r, — ¢(x)) as the shape function approximating the displacement
jump. Then, for the three-dimensional case,

[ 6r,n, — 20 0 0
dop(x
0 Sryny — 24 0
0 0 dr,n, — 22
G.(x) = i a7z 0z 8
e( ) al"dny _ % 5Fdnx o O(gi)() 0 ( )
0 51-an — a(/éix) 51‘ng E(/é_ix)
o0 o

The above interpolation has been applied successfully for two dimensional analysis with constant strain
triangular elements (Armero and Garikipati, 1996; Oliver, 1996b; Wells and Sluys, 2000); however, it re-
quires some modification for robust three-dimensional implementation with the four-noded tetrahedral
element. The conditions for the function ¢(x) in Eq. (3) must be supplemented by the condition that
displacements on each side of the discontinuity are constant along the discontinuity within an element. That
is, the enhanced displacements « are constant along the discontinuity within each element. To do this, the
regular part of the enhanced shape functions are formed according to the conditions in Eq. (3), then rotated
into a local coordinate system aligned with the normal to the discontinuity and the shape function com-
ponents orthogonal to the discontinuity normal are removed. The shape functions are then rotated back to
the global coordinate system. The requirement that the enhanced displacements be constant along the
discontinuity within an element is reasonable when considering the constant strain field of the four-noded
tetrahedral element. This modification provides almost exactly the same response as with the unmodified G,
matrix, but leads to a much more robust procedure. In a simple cube patch of elements in tension, failing to
remove orthogonal components from the enhanced shape functions results in excessive lateral sliding on the
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embedded interfaces and very poor convergence behaviour. This arises particularly in the case when two
nodes of a four-noded tetrahedron fall on each side of the discontinuity. Fig. 3 illustrates the cases of
linearly varying and constant displacements along a discontinuity. For simplicity, it is illustrated using a
triangular element.

Next, in order to ensure traction continuity across discontinuities, the variational statements must be
examined. A special formulation is exploited here, first used by Simo et al. (1993), akin to making the space
of admissible strains different to the space of admissible strain variations. The resulting system of equations
is non-symmetric, but allows traction continuity to be neatly satisfied while utilising the kinematically
formed shape functions in Eq. (8).

Following the enhanced assumed strain methodology, the enhanced strain field is assumed to be ortho-
gonal to the stress field, automatically satisfying Eq. (7b). This then allows the stress field to be eliminated
from the remaining variational statements. Eq. (7c) can then be rephrased as

ok wk
/?c:aW(x’Vu+8)dQ+/ <6W(X’Vu+8)nd>~nddl":0. 9)
a Og Iy Oe

Assuming a straight discontinuity within an element (nq is constant over .) and a piecewise constant strain
field (an exact assumption for constant strain elements), taking into account that to pass the patch test
(Taylor et al., 1986), Eq. (9) must hold for an arbitrary constant stress field and the orthogonality re-
quirement must hold for each element, Eq. (9) can be integrated explicitly over an element

Veye + 4e(ng ® 1) = 0, (10)

where V; is the volume of the element and A, is the area of the discontinuity plane through the element.
Rearranging Eq. (10) gives the expression for the continuous part of the variation of an enhanced strain
field on Q. \ T'y:

- Ae

Yo = =7 (Ma @ 11q). (11)

Now, the virtual work equation (7a) and Eq. (9) give two weak equilibrium equations for an element
containing a discontinuity,

W (x, Vu + g
/ 2 oW (x, Vu + &) dQ = we(y), (12a)
a Og
\Y ok
/ ?C:wdg_i_/ tr,. - gadl =0, (12b)
Qe\lg Og Iy

where tr, comes from a discrete traction—separation law.

Fig. 3. Triangular element with (a) linearly varying and (b) constant displacements along the discontinuity.
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3.2. Linearised equations

In matrix form, the continuous part of the variation of an enhanced strain field in Eq. (11) can be ex-
pressed as

G, = (—AVZ)n. (13)

Note that n is a matrix defined in Eq. (6), rather than the normal vector ng. Now, for updating stresses, the
kinematically constructed interpolation G in Eq. (8) and the material tangent matrix D are used:

6 = D(Ba + Ga). (14)

Effectively, in Eqgs. (12a) and (12b), the enhanced strain field & is not necessarily the same as the variation of
the enhanced strain 9. For this reason, in the variational statements, the enhanced strain used in calculating
stresses & has been denoted differently to the enhanced strain field that appears explicitly & This leads to, in
general, a non-symmetric element stiffness matrix irrespective of the material model used. It is possible to
use the matrix G* in the stress update (resulting in a symmetric stiffness matrix (Larsson and Runesson,
1996)), although this provides no kinematic enhancements of the underlying element to assist in over-
coming mesh alignment dependency. Although the method adopted here is not variationally consistent (in
following the enhanced assumed strain approach to eliminate the stress field from the variational state-
ments, it must be assumed that the spaces of the admissible displacements, strains and stresses are the same
as the spaces of the admissible displacement, strain and stress variations), it is able to properly reproduce
the localised deformations better. The performances of the symmetric and non-symmetric formulations are
compared in Section 5.

Taking variations of the weak equations (12a) and (12b) yield the following discretised non-linear
equations:

/ B0 dQ = (15a)

e

/ G*TadQ+/ t.dl" = 0. (15b)
e l—‘d,e

Substituting the continuous part of the enhanced strain field Eq. (13) into Eq. (15b) and integrating the
tractions over the discontinuity gives

Ae/ —inTo'dQ—i—Aete:O? (16)
. e
which shows that Eq. (15b) imposes traction continuity in a weak sense and that the area of the discon-
tinuity plane acts simply as an integration weight and has no influence on the numerical result. Conversely,
for the symmetric formulation (G = G"), since the matrix G* plays a role in the stress update, the for-
mulation is dependent on the area of the discontinuity plane. In the context of a constant strain element, for
the non-symmetric case, the element response is dependent only on the normal to the discontinuity and the
position of the discontinuity with respect to the element nodes, whereas with the symmetric formulation,
the element response is dependent on the normal to the discontinuity and the area of the discontinuity
plane.
Linearising Egs. (15a) and (15b), gives the stiffness matrix of an element:

Kbb,e Kbg,e d a. B ff.’f; B fil?.; ( 1 7)
Keve Kgge +Kie doe | 0 fi“nfa 7
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where

Kpbe = / B!DB. dQ,
Kpge = / B!DG. dQ,
Qe
Kybe = /Q G.'DB.dQ, (18)

Kyge = / G.'DG.dQ,
Qe

K. = / T.drI,
Ie

and T, is the matrix that relates displacements and tractions at the discontinuity, (t. = T.&.). Note that G,
contains only the regular parts of Eq. (8). The enhanced modes (a.) can be solved at element level by static
condensation.

4. Discrete constitutive model

The application of discrete traction—displacement constitutive models allows the phenomenological
behaviour of materials to be addressed in a very simple and direct manner. The individual displacement
components at the interface provide much information as to the actual current state at the interface (crack
opening, sliding, closing, closed). It is possible to address to traction—displacement relationship for each
component separately, or to define some type of inter-dependence.

For application here in three dimensions, a relatively simple damage model has been applied. A very
intuitive approach is taken by making mode-I and mode-II stiffnesses functions of the normal separation.
The traction—separation relationships are constructed entirely in the local #, s, ¢, coordinate system where n
is the normal to the discontinuity and s and ¢ are orthogonal and lie in the plane of the discontinuity (Fig.
4). To form the element stiffness matrix and internal force vector, the tractions t and traction tangent T at
the discontinuity are rotated back to the global coordinate system.

Since the intended application is for brittle fracture, the normal to the discontinuity is aligned with the
major tensile principal stress. When, at the end of a loading step, the major tensile principal stress at an

Fig. 4. Local n, s, t coordinate system within a tetrahedral element.



G.N. Wells, L.J. Sluys | International Journal of Solids and Structures 38 (2001) 897-913 905

integration point has exceeded the tensile strength of the material, a discontinuity is introduced. Discon-
tinuities are introduced only at the end of a loading step since it is undesirable to introduce a discontinuity
to a non-equilibrium state. Also, by introducing discontinuities only at the end of a loading increment, the
convergence rate of the full Newton—Raphson scheme is quadratic.

4.1. Loadinglunloading

The internal variable x is taken as the maximum normal displacement attained. The loading function is
then defined as:

Sf(o, k) =a, — K, (19)

where f > 0 indicates loading (growing damage) and f* < 0 indicates unloading (crack closing). A closed
crack is indicated by a, < 0.

For modelling brittle materials such as concrete, from experimental experience, an exponential softening
curve is adopted for the normal traction—separation relationship at the interface. The relationship is given
in terms of the tensile strength £, the fracture energy G; of the material and the internal variable:

: St
t, = — ). 20
fexp (= Lo (20)
The shear stiffness is given as an exponential function of the internal variable «,
by = dinl eXp(th) Oty (21)

where dy,, is the initial shear stiffness of the crack (x = 0) and 4, reflects the crack shear stiffness at some
intermediate stage of damage. For the crack shear stiffness d,._;y at x = 1.0:

hs,lc:l.() = - ln(dK:].O/dint)- (22)

For computational efficiency, Egs. (20) and (21) can be easily differentiated with respect to time to form a
consistent tangent. For loading,

%n —jg eXp(*éK) 0 0 a:n
ls 0= | —hdin exp(hy)o,  din exp(hgx) 0 % 0 (23)
17 —hyding exp(hgK) o, 0 iy exp(hyK) Ot

For unloading, the secant stiffness is given by making all off-diagonal terms zero. The (1,1) term in the
tangent stiffness is then replaced by f; exp(—f;/Grk)/k. This differs from normal continuum elasticity based
damage models since there is no elastic part to unload. Normally, the secant stiffness is given in terms of the
elastic tangent D° and a damage variable w, i.e. Gunioading = (1 — w)D°é.

To achieve elastic unloading with the embedded discontinuity model, the diagonal terms of the tangent
stiffness can simply be made very large. There are an infinite number of ways to take advantage of the very
clear information provided by the individual displacements at the discontinuity. An obvious modification
of the above model is to allow shear stiffness recovery with crack unloading. Instead of the shear stiffness
being a function of the internal variable x, it could be made a function of the actual normal separation,
le = dint CXp(hSOCn) Ol -

4.2. Closed crack
For a closed crack, full stiffness recovery for both normal and sliding terms is assumed. Since the dis-

placements at the discontinuity contain no elastic part, the crack stiffness terms are made very large in all
directions. A closed crack is detected when the normal component of the displacement at the discontinuity
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Fig. 5. Unit patch of 12 four-noded tetrahedral elements: (a) embedded discontinuity plane and (b) loading—unloading response.

is less than zero. This physically implies that the two fracture surfaces are pushing against each other. To
illustrate the loading—unloading behaviour of the model, a unit patch of 12 four-noded tetrahedral elements
is loaded in tension, then unloaded and compressed (Fig. 5).

5. Numerical analysis

In this section, the performance of the embedded model in three dimensions is examined by analysing
several different problems. The ability to accurately model failure with coarse meshes allows complex
problems to be analysed very efficiently and quickly. Through the linearisation of the constitutive model
Eq. (23), quadratic convergence of the full Newton—-Raphson solution procedure is observed when loading
signs at integration points do not change within a loading increment. This is an enormous advantage when
performing large scale calculations.

A difficulty that arises in larger analyses is loading, unloading and reloading at discontinuities within an
increment. It has been observed that quadratic convergence behaviour is approached for situations where
the loading state at discontinuities changes during the iterative procedure; however, at certain stages in the
analysis of larger specimens with fine meshes, one or more discontinuities can begin to oscillate between
loading and unloading states, having disastrous consequences for the convergence of the numerical scheme.
The robustness of the algorithm can be increased by adopting a modified Newton—Raphson approach when
the sign of the loading function is detected to have changed more then once during a loading increment.
When this occurs, for the rest of the increment, the secant tangent of the global system is used. Although
this increases the robustness of the algorithm by preventing oscillations at the interfaces, the convergence
becomes prohibitively slow for large three-dimensional calculations.

5.1. Symmetric versus non-symmetric implementation

To show the difference in response for the symmetric (Ge = G;) and non-symmetric (G. # G;) formu-
lations, the load—displacement response and strain energy of a unit patch of elements (Fig. 5) is shown in
Fig 6. The fracture energy of the patch was set as 0.02 N mm/mm?. It can be seen that the symmetric
approach grossly overestimates the energy dissipated in the failure process, whereas the non-symmetric
model is much closer to the actual fracture energy. In application, the symmetric approach requires some
enforcement of crack path continuity, since the position of the discontinuity within the element has a
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Fig. 6. Load-displacement response and strain energy (U) of a unit patch for symmetric and non-symmetric implementation.

significant effect on the response. Within the simple patch of constant strain elements in Fig 5, the load—
displacement response of the symmetric model changes if the location of the integration point within each
element is moved. For the non-symmetric model, the result changes only if the domain (Q", Q") to which

the element nodes belong to changes. This indicates that the enforcement of crack path continuity is not
essential for the non-symmetric model.

5.2. Double notched specimen

To examine the objectivity of the embedded approach, a tension specimen with symmetric notches (Fig.
7) is analysed with two different meshes. The following material properties are adopted: E = 1.0 x 10* MPa,
fi =10 MPa, v = 0.1, G; = 0.02 N mm/mm?, di,, = 1.0 x 10> N/mm, d,_; o = 1.0 x 10~® N/mm. To avoid

P/4 P/4
P/4 P/4
-
20
%,
62.5
NG ts
N N I5
YT
5
32.5
1
ZMJ’ =

Fig. 7. Double notched specimen (loading plates shaded).
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Fig. 8. Load—displacement response of double notched specimen.

any fracture at the supports or loading points, the specimen is placed between two loading plates. The base
of the specimen is fully restrained and an equal load is applied at each of the four top corners.

The load—displacement (displacement is taken as the average displacement of the top loading plate)
response for two meshes is shown in Fig. 8. It can be seen that the global response of the two meshes (Fig.
9) is nearly identical for the non-symmetric model. Again, the symmetric model shows an overly ductile re-
sponse. For a third mesh with approximately 6000 elements, it was not possible to calculate a converged
solution past the peak load. This can be explained by the cracking pattern shown in Fig. 10 (the visible
mesh is only on the boundary of the model). With mesh refinement, the number of parallel layers cracks
increases, and it becomes increasingly difficult numerically to find a stable equilibrium branch. Upon re-
finement of the mesh, near the peak load, the loading function of an increasing number of elements begins
to oscillate about zero during the iterative procedure, resulting in a change of sign of the material tangent
with each iteration. When this occurs, the normal incremental displacement at the discontinuity (solved by
static condensation) does not approach zero (converged state), but simply changes sign with each iteration.

(b)

Fig. 9. Deformed specimen: (a) mesh with 1534 elements and (b) mesh with 3741 elements (non-symmetric formulation).
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Fig. 10. Plane view of embedded crack patterns for (a) mesh with 1534 elements and (b) mesh with 3741 elements (non-symmetric
formulation).

5.3. Single-edge-notched beam

To further examine the embedded model for a more complex problem, a single-edge-notched (SEN)
beam (Fig. 11) is analysed to test the ability of the embedded model (non-symmetric) in situations where
large shear stresses exist and cracking is known experimentally to be curved (Schlangen, 1993). Previously,
smeared crack models have been able to reasonably reproduce the global load—displacement response of the
SEN beam, but have failed to capture the correct (curved) failure pattern (De Borst, 1986; Rots, 1988;
Feenstra, 1993). In order to model the failure mode correctly with a continuum model, Peerlings et al.
(1998) resorted to a strain based modified Von Mises criterion for the internal damage variable, claiming
that a purely principal strain type criterion is too sensitive to shear strains to properly model curved
cracking in the case of the SEN beam. To study the behaviour of the embedded formulation, the fracture
pattern at the peak load is examined. The material properties adopted for the analysis are: E = 3.5 x 10*
MPa, f, =2.8 MPa, v=0.15, G =0.1 N mm/mm?. The crack shear stiffness is dj, = 1.0 x 10?> and
de—10=1.0x 107,

Fig. 12 shows the pattern of discontinuities (viewed from the side through the SEN beam) and the
contour plot of the internal variable, averaged at the element nodes. The discontinuity planes near the
notch are oriented in a direction consistent with experimental observations. However, it can also been seen
that a crack does not propagate in the direction of the discontinuities, but rather the discontinuities form in
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Fig. 11. Plane view of SEN beam, depth = 100 (dimensions in millimetres).
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(@)

Fig. 12. SEN beam using principal stress initiation criterion: (a) crack pattern at peak load (plane view) and (b) internal variable at
peak load.

layers towards the bottom of the specimen. The discontinuities are first initiated around the notch and
continue directly downwards, eventually meeting the discontinuities initiated to the left of the bottom right
loading plate. This result is very similar to results obtained using smeared crack models (Rots, 1988;
Schlangen, 1993). In attempting to model a curved crack, propagating from the notch, here the principal
stress criterion has been supplemented by the modified Von Mises criterion. The stress form of the modified
criterion is given as (Williams, 1980):

%Jz + (0. — o)} — 0.0¢ <0, (24)

where 7, is the first invariant of the stress tensor (tr(e¢)) and J, is an invariant of the deviatoric stress tensor
(3]|6]]> — (tr(6))?). The tensile strength of the material is o, and the compressive strength ¢.. For the nu-
merical example here, the compressive strength is made 10 times greater than the tensile strength. If the
major tensile principal stress has exceeded the tensile strength of the material and the modified Von Mises
yield surface Eq. (24) has been violated, a discontinuity is introduced normal to the major tensile principal
stress. It can been seen in Fig. 13 that the additional condition prevents the formation of cracks moving
directly downwards. The resulting crack pattern is consistent with experimental results (Schlangen, 1993).

The load—displacement responses of the models is compared with experimental results from Schlangen
(1993) in Fig. 14. It can be seen that the model using the principal stress criterion predicts the peak
load well, and follows reasonably the post-peak response, as smeared crack models have done in two-
dimensions. The response using the modified criterion in Fig. 14 shows an overestimation of the peak load.
The load—displacement response, shown here, converged numerically, and the rough response is due to the
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Fig. 13. SEN beam using principal stress plus modified Von Mises initiation criterion: (a) crack pattern at peak load (plane view) and
(b) internal variable at peak load.
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Fig. 14. Load-crack mouth sliding displacement (CMSD) response and experimental results (Schlangen, 1993) for SEN beam.

inconsistency in the initiation criterion and the constitutive model used. At initiation of a discontinuity,
there can be a significant jump between the elastic maximum principal tensile stress and the normal traction
across the discontinuity which leads to the rough load—-displacement response and a lack of robustness past
the peak load. The modified initiation criterion was introduced only to examine the effect on the pattern of
cracking. For a consistently derived initiation criterion and orientation of a discontinuity, the discrete
constitutive model needs to be developed from the continuum case (Oliver, 1996a).

6. Conclusions

An embedded discontinuity model has been developed as a method for performing large scale, three-
dimensional calculations for the fracture of brittle materials. The numerical implementation does not re-
quire any real or artificial length scale and the constitutive model is completely independent of the finite
element mesh. The ease with which traction separation relationships can be developed is very appealing for
the simulation of failure in materials such as concrete, where mode-I and mode-II parameters can be ad-
dressed directly and linked to experimental data. The embedded model offers advantages over classical
smeared models since no numerical parameters are required to achieve objective results and stress locking
as a consequence of displacement compatibility which is avoided since the enhanced modes are incom-
patible. The kinematic enhancement of the non-symmetric models allows dependency on mesh alignment
to be largely overcome. Conceptually, in order to accurately model fracture, the mesh need only be fine
enough to capture effectively the strain field in the specimen. The example of the double notched specimen
shows that the model can produce a global response that is objective with respect to the spatial discreti-
sation.

The analyses of the double notched specimen and the SEN beam also highlights a feature unique to the
three-dimensional version of the model. While the constitutive model is discrete, it can be seen that the
cracking pattern is very diffuse, unlike what has been observed in two dimensional models. This effect can be
largely attributed to the increased complexity of finding a path through an unstructured three-dimensional
mesh. It is not always possible to easily identify a single discrete crack propagating through the specimens,
but rather a diffuse band of discontinuities. As with other models in three dimensions, this can lead to a loss
of robustness when a number of integration points lie close to the boundary between the damaging (lo-
calising) region and the elastically unloading region. At these points, the sign of the loading function may
begin to oscillate during the iterative process. Experience here indicates that this problem becomes more
severe upon mesh refinement.
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From the numerical results, it is concluded that the embedded model is capable of producing a global
response that is insensitive to element size and to an extent element orientation in coarse three-dimensional
meshes. The use of discrete constitutive models does not make this a truly discrete approach with genuine
separation, but rather a continuum model with special enhancement of the local strain field by considering
the extreme case when a continuum model collapses onto a line. By doing this, no numerical parameters
dependent on the spatial discretisation are required.
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